Effective Time Scale of the Northern Hemisphere Winter Circulation Waviness

Published in Journal of Climate, 2025

Recommended citation: Chen, Gang and Yu Nie, 2025: Effective Time Scale of the Northern Hemisphere Winter Circulation Waviness, Journal of Climate, 38, 1021--1035, doi:10.1175/JCLI-D-24-0236.1.

Midlatitude weather extremes such as blocking events and Rossby wave breaking are often related to large meridional shifts in the westerly jet stream. Numerous diagnostic methods have been developed to characterize these weather events, each emphasizing different yet interrelated aspects of circulation waviness, including identifying large-amplitude ridges or persistent anomalies in geopotential height. In this study, we introduce a new metric to quantify the circulation waviness in terms of effective time scale. This is based on the Rossby wave packet from the one-point correlation map of anomalous meridional wind, applicable to jet waviness involving multiple wavenumbers. Specifically, we estimate the intrinsic frequency of Rossby waves and decay time scale of wave amplitude in the reference frame moving at the local time mean zonal wind. The resulting effective time scale, derived from linear theory, serves as a proxy for the eddy mixing time scale in jet meandering. Remarkably, its spatial distribution roughly resembles that of circulation waviness in the Northern Hemisphere winter as depicted by local wave activity (LWA). In the high-latitude regions characterized by weak zonal winds, the long time scale in waviness aligns with large values in LWA. By contrast, short waviness time scales in subtropical jet regions correspond to the suppressed amplitude in waviness despite large values in eddy kinetic energy (EKE). Furthermore, the effective time scale in waviness largely captures the interannual variability of LWA in observations and its projected future changes in climate model simulations. Thus, this relation between the waviness time scale and zonal wind provides a physical mechanism for understanding how zonal wind changes impact regional weather patterns in a changing climate.

Download paper: journal website